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A global upsurge in antibiotic-resistant Acinetobacter baumannii requires supervised
selection of biocides and disinfectants to avert nosocomial infections by reducing its
spread. Moreover, inadequate and improper biocides have been reported as a contributing
factor in antimicrobial resistance. Regardless of the manner of administration, a biocidal
concentration that does not kill the target bacteria creates a stress response, propagating
the resistance mechanisms. This is an essential aspect of the disinfection programme and
the overall bio-contamination management plan. Knowing the mechanisms of action of
biocides and resistance modalities may open new avenues to discover novel agents. This
review describes the mechanisms of action of some biocides, resistance mechanisms, and
approaches to study susceptibility/resistance to these agents.
ª 2021 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Introduction

Acinetobacter baumannii, also known as ‘Iraqibacter’, is
famed for its implication in causing severe infections among
soldiers in US military treatment facilities. Progressively,
A. baumannii quickly positioned itself as one of the most
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troublesome pathogens in healthcare facilities throughout the
world [1,2]. A. baumannii is part of the Acinetobacter calcoa-
ceticusebaumannii complex, which includes A. baumannii, Aci-
netobacterpittii,AcinetobacternosocomialisandAcinetobacter
calcoaceticus. The first three are associated with infections,
while the fourth is rarely established as a pathogen.
A. calcoaceticusebaumannii complex grows at temperatures
between35�Cand37�C;however, specificenvironmental isolates
thrive at temperatures between 20�C and 30�C. The only bacte-
rium in the family able to survive at 44�C is A. baumannii [3,4].

A. baumannii accounts for more than 12% of hospital-
acquired bloodstream infections in intensive care units (ICUs),
with broad regional variations: it is common in Southern Europe,
Ltd. All rights reserved.
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the Middle East, Asia and South America, but uncommon in
Northern Europe and Australia [5]. A. baumannii has been found
in the nose, ears, throat, forehead, trachea, conjunctiva, vagina
and perineum, axillae, groin, hands and toe webs, among other
places, in healthy people [4,6]. In healthcare centres,
A. baumannii can be found on tables, furniture, roofs, medical
equipment and supplies, as well as medical personnel’s pos-
sessions, tap water sinks, telephones, door handles, hand sani-
tizers, dispensers, trolleys, cabinets and even computers
[4,7,8]. Reservoirs of A. baumannii are found in the hospital
environment, and the bacterium’s ability to survive for up to 1
month on wet or dry surfaces has been allied with outbreaks of
hospital-acquired infection in the form of ventilator-associated
pneumonia, meningitis, bacteraemia, urinary tract infection,
bone infection and wound infection [9,10]. Invasive procedures
or usage of medical devices, extended ICU stay, mechanical
ventilation, enteral feeding, burns, and recent use of broad-
spectrum antibiotics (especially cephalosporins or fluo-
roquinolones) are risk factors for acquisition of A. baumannii
[11]. In hospital facilities, a mortality rate of 26% has been
reported, with rates rising to 40e50% in ICUs [4,9]. A. baumannii
is themost common cause of ventilator-associated pneumonia in
the hospital setting, accounting for 15% of all nosocomial
infections, and has the highest morbidity and mortality rates in
medical wards, especially ICUs [4,12]. Of all the antibiotics
prescribed elsewhere in the hospital setting, more than half are
recommended for A. baumannii for patients admitted to ICUs
[4,13]. While A. baumannii is not considered a community
pathogen, it can populate tracheostomy sites in immunocom-
promised adults and children, causing community-acquired
bronchiolitis and trachea bronchitis. It has also been linked to
community-acquired pneumonia caused by underlying disorders
such as obesity, alcohol abuse, diabetes mellitus and chronic
obstructive pulmonary disease in tropical regions [4].

A. baumannii belongs to the group of ESKAPE pathogens
comprising Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomo-
nas aeruginosa and Enterobacter spp. e because of their
capacity to develop antibiotic resistance [9]. Prolonged envi-
ronmental persistence allows A. baumannii to spread quickly
and gain resistance to both traditional antimicrobials and certain
biocides [14]. According to the US Centers for Disease Control
and Prevention, almost 40% of A. baumannii are imipenem-
resistant and multi-drug-resistant [15]. In recent years,
carbapenem-resistant A. baumannii (CRAB) has been listed as a
‘highest priority pathogen’ by the World Health Organization for
discovering novel antimicrobials [9]. Awareness of antimicrobial
resistance mechanisms will support this effort [16,17].

In 1970, ampicillin, cephalosporins, carbapenems and various
antibiotic groups were effective against A. baumannii [11].
Resistance to ampicillin, carbenicillin, gentamicin and nalidixic
acid was first reported after 1975, and over time, this has
increased, with the first record of CRAB appearing in the early
1990s [8]. A. baumannii has innate (chromosomal) antimicrobial
resistance pathways, but may also develop novel resistance
determinants by mobile genetic elements, including trans-
posons, integrons, plasmids, insertion sequences and resistance
islands [11]. Various antibiotic resistance mechanisms explored
in A. baumannii include: influence of efflux pumps and beta-
lactamases; presence of aminoglycoside-modifying enzyme;
loss of lipopolysaccharide (LPS); a point mutation in the pmrAB
gene implicated in colistin resistance; modification of outer
membrane porins (OMP) and penicillin-binding protein;mutation
in DNA gyrase and topoisomerase IV; modification of the ribo-
somal binding protein; and biofilm formation [4,16,18e20].
Biofilm formation by A. baumannii underlies its contribution in
many hospital-acquired infections. The disproportionate pres-
ence of A. baumannii infections in various wards in the same
hospital raises serious concerns about biocide usage and efficacy
[21]. Several biocides are used in healthcare settings, but the
crucial point is to use appropriate biocides to prevent and con-
trol the spread of infectious diseases in hospitals and other
health facilities. The emergence of antibiotic-resistant patho-
gens in the hospital setting has increased the debate on their
usage; understanding modes of action and efficacy may prevent
indiscriminate usage. This review discusses certain biocides and
their modes of action, as well as their resistance mechanisms.
Four search engines were used in this review: Google Scholar,
PubMed, Science Direct and Scopus. ‘Name of the biocide’,
‘action’, ‘efficacy’, ‘reduced susceptibility’, ‘susceptibility’,
‘tolerance’ and ‘minimum inhibitory concentration (MIC)’ were
used for each search.
Biocides and their mechanism in control of
A. baumannii

Biocides is a broad term for chemical agents utilized to
achieve hygiene. Their classification within particular groups,
such as antiseptics and disinfectants, is determined mainly by
their practical usage [15]. They are widely used to prevent or
eradicate pathogens in hospitals, laboratories, factories and
homes. As such, they play an essential role in reducing the
spread of pathogenic micro-organisms, especially in the hos-
pital setting [22,23]. Two young boys were among the first
patients to benefit from biocides. In 1867, Joseph Lister
explained how he used carbolic acid to save their wounded
limbs from being infected, and prevented amputation. In the
face of potentially untreatable infections caused by multi-
drug-resistant (MDR) pathogens, our reliance on biocides has
resurfaced as prevention (through the use of biocides) is once
again preferable to treatment (use of failing antibiotics) [24].

According to the reports, typical disinfectants such as 70%
ethanol, chlorhexidine, sodium hypochlorite and quaternary
ammonium compounds (QACs) are totally effective against
A. baumannii isolates if used at themanufacturers’ recommended
concentrations [25,26]. These biocides and others can be divided
into four categories depending on their target of action (Figure 1):
those that act on proteins (alcohols, phenols, phenyl ethers,
aldehydes, heavy metal derivatives, isothiazolones, acids or par-
abens, peroxygens, chlorine compounds, biguanides and vapour-
phase disinfectants), membranes (QACs, biguanides, phenols,
phenyl ethers, acids, terpenes, alcohols, anilides, peroxygens,
parabens, isothiazolones and anionic surfactant), nucleic acids
(alcohols, acids or parabens, antimicrobial dyes, acridines,
biguanides, aldehydes, diamidines, chlorine-releasing com-
pounds, heavy metal derivatives, peroxygens, halogens and
vapour-phase disinfectants) and cell walls (alcohols, phenols,
aldehydes, chlorine-releasing compounds and heavy metal prod-
ucts) [27]. In general, biocides are thought to have many target
sites within the bacterial cell, and they cause overall damage to
these targets [13]. The following subsections provide a brief
overview of common biocides used to combat A. baumannii and
other micro-organisms.
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Quaternary ammonium compounds

QACs are cationic detergents (surfactants or surface-active
agents) that reduce surface tension and shape micelles,
allowing liquid dispersion, and prevent pathogenic bacteria
from spreading [28,29]. QACs are algistatic, bacteriostatic,
tuberculostatic, sporistatic and fungistatic at low concen-
trations (0.5e5 mg/L). They are microbicidal for these same
groups at 10e50 mg/L concentrations, depending on the
organism and formulation [28]. QAC activity has been proposed
to reach beyond the surface to intracellular targets, despite
their well-known membrane-damaging properties [24]. Their
positively charged head group absorbs acidic components of
the bacterial cell envelope, while the long alkyl chains solu-
bilize the membrane causing cell death. Benzalkonium chloride
disrupts membranes; however, it causes widespread protein
aggregation at low concentrations [29].

Chlorhexidine

Chlorhexidine is a divalent cationic biguanide molecule
available in various forms, such as chlorhexidine gluconate
which is water soluble [30]. To minimize healthcare-associated
infections, the agent has risen in popularity when chlorhex-
idine bathing is used with intranasal mupirocin in patients in
ICUs [31]. Chlorhexidine is most often utilized at a concen-
tration ranging from 0.5% to 4%, depending on the clinical
indication. Hand disinfectants, for example, usually contain
between 0.5% and 4% chlorhexidine [30]. In contrast to other
biocides, chlorhexidine is a broad-spectrum biocide with long-
lasting residual activity [32]. It is most effective against Gram-
positive bacteria, but it can also suppress Gram-negative bac-
teria, enveloped viruses and fungi [33]. The positively charged
chlorhexidine binds to the negatively charged bacterial cell
membrane and cell surface, and thus causes loss of
osmoregulation andmetabolic energy at low concentrations, as
well as a loss of cytosolic potassium ions, thereby inhibiting
cellular respiration. At higher concentrations, chlorhexidine
causes a complete lack of membrane integrity, resulting in the
leakage of cellular contents from the cell and, eventually, cell
lysis and death [13,30]. However, chlorhexidine is unable to
penetrate biofilm [34].

Hydrogen peroxide

Hydrogen peroxide is a commonly used antiseptic that exists
in both gas and liquid forms. In liquid form, it is used as an
antiseptic on the skin at concentrations ranging from 3% to 6%
(v/v) [35]. It is also widely found as a dental disinfectant at
concentrations varying from 0.4% to 1%. It is a typical active
ingredient of contact lens solution, where it is usually used at a
concentration of 3% [30]. Hydrogen peroxide is a broad-
spectrum antimicrobial that is effective against bacteria,
viruses and protozoa [36]. Although the exact mechanism of
action of hydrogen peroxide is not known, it is postulated that
it is mainly related to its oxidative activity. The inclusion of
trace metals, such as iron, catalyses the formation of strongly
reactive hydroxyl radicals after hydrogen peroxide has passed
through the cell membrane, which results in the cleavage of
nucleic acid and protein backbones, leading to cell membrane
damage. Many cellular processes, including RNA, DNA and
protein synthesis pathways, are impaired due to oxidative
damage [30,37].

Povidone-iodine

Povidone-iodine (PVP-I) is a potent, broad-spectrum anti-
microbial that has been used for over 60 years in infection
control and prevention [38]. In the early days of its discovery,
low solubility, instability and toxicity made it unsuitable for
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use; however, to overcome some of these problems, free iodine
was mixed with potassium iodide salts and alcohol, which
increased its solubility significantly [30]. It is available in var-
ious formulations for use as a skin, hand and mucosal surface
disinfectant, as well as wound care and eye applications [38].
While 10% PVP-I solutions are often used for pre-operative skin
disinfection, lower concentrations, such as 5%, are used for
ophthalmic procedures. Furthermore, more dilute solutions
(<2%) are used to prevent and treat childhood conjunctivitis
[39,40]. PVP-I has been shown to have antimicrobial activity
against Gram-positive, Gram-negative and certain spore-
forming bacteria (Clostridia spp., Bacillus spp.) as well as
mycobacteria [38]. In the mechanism of action, near to the cell
membranes of target micro-organisms, PVP releases free
iodine, which destabilizes membrane integrity, denatures
nucleic acids, and can quickly destroy micro-organisms by
inhibiting critical cellular processes such as electron transfer,
cellular respiration and protein synthesis non-specifically while
within the cell [30].
Triclosan

Triclosan is a bisphenol class of compounds that has been
used mainly in meticillin-resistant Staphylococcus aureus
decolonization protocols. Triclosan is also used in various
materials and plastics, including surgical drapes, toothbrush
handles, wound sutures, mop handles and even children’s toys
[27,30]. The lack of effectiveness of triclosan in household soap
products was later confirmed, leading to a ban on its usage
along with another 18 biocidal chemicals by the US Food and
Drug Administration in September 2017 [41]. Triclosan mainly
targets bacteria. Like certain other biocides, it is believed to
attack the cell membrane in a non-specific way. On the other
hand, it has been shown to act on a specific target within the
bacterial fatty acid biosynthetic pathway known as FabI in
many studies. However, it has been proposed that at higher
doses, such as those used in topical antiseptics, triclosan may
have a non-specific action, causing cell lysis by effects on RNA
and protein synthesis, resulting in detrimental effects on
membrane integrity [30].
Alcohol

n-propanol is the most widely used alcohol compound in
biocides; its optimum bactericidal effectiveness is attained at
concentrations varying from 60% to 90% [30,42]. Pure alcohol,
or alcohol that contains <1% water, is less bactericidal than
alcohol at intermediate concentrations. Thus, water is crucial
in the denaturation of proteins [42]. The exact mechanism of
alcohol’s antimicrobial activity is not known with certainty;
however, it may be linked to membrane disruption, inhibition,
or uncoupling of mRNA and protein synthesis through effects on
ribosomes and RNA polymerase or associated with protein
denaturation [30,43].

Despite the effectiveness of the described biocides, when
bacteria are exposed to a biocide or biocidal product, they
go through a stress response that involves the expression of
global gene regulators and, eventually, the expression of
non-specific mechanisms that may enable them to survive
[44].
Mechanism of resistance to biocides

Bacterial resistance to biocides has been classified as either
intrinsic, a natural property of the bacterium, or acquired,
resulting from the acquisition of resistance genes in the form of
transposons or plasmids [22]. These definitions remain valid,
although the concept of transient resistance recognizes that
the effect of a biocide on a bacterium may be more complex
and short-lived after the expression of a mechanism(s) in
response to direct selective pressure [44]. Among the mecha-
nisms involved, phenotypic alterations (such as altering the
cell membrane charge), alteration of the antimicrobial target,
and inactivation of the disinfectant are some well-known
resistance mechanisms to antimicrobials [22,27,44]. Since the
mechanism of biocide resistance and antibiotic resistance are
almost the same, cross-resistance to biocides and antibiotics is
expected to occur simultaneously in bacteria. The efflux
pumps and genetic causes of disinfectant resistance in
A. baumannii are shown in Figure 2.

Biofilm formation

Biofilm is a term used to describe a complex group of micro-
organisms in which the cells are coated in an extracellular
polymeric material, a self-produced matrix, which facilitates
bacteria to prevent the penetration of antimicrobial agent
[17]. Enzyme-mediated resistance, the composition of the
outer membrane, efflux pumps and genetic tolerance can also
play a role in the antimicrobial resistance of biofilm [6]. For-
mation of biofilm is important for the bacteria’s survival in the
presence of antibiotics, host immune defence and adverse
environmental conditions, causing increased tolerance to acid
exposure and dehydration in A. baumannii cells, resulting in
colonization, which is a significant cause of device-related
infection [21,45]. Biofilm-forming bacteria are estimated to
be associated with 65e80% of human infections [21]. Factors
such as surface hydrophobicity, temperature and oxygen con-
centration are documented to influence the biofilm formation
of A. baumannii and other bacteria [1]. The biofilm-related
gene, csuE, is a member of the usher-chaperone assembly
system, which mediates attachment and biofilm formation.
Type IV pili (T4P) is another crucial component in the early
stages of biofilm formation [9,46]. A. baumannii biofilm for-
mation is also influenced by an auto-inducing quorum-sensing
molecule (acyl-homoserine lactone), which is generated by the
abaI-encoded autoinducer synthase [3]. Several causes,
including the existence of Bap (biofilm-associated protein),
some novel proteins (e.g. CarO, OmpA, OprD-like, DcaP-like,
PstS, LysM and Omp33) and histidine metabolism (e.g. uroca-
nase) were linked to the capacity of A. baumannii to form
mature biofilms on polypropylene, polystyrene, titanium and
other medical-device-related materials [1,47]. Bacterial bio-
film production along the catheter surface is thought to be the
most critical step in the development of bacteriuria [21].
A. baumannii at the aireliquid interface also produces pel-
licles. In clinical isolates, the production of these floating
biofilms is a rare occurrence, linked to motility on the surface
[48]. Motility and pellicles, or surface-attached biofilms, have
a complicated interaction. Although motility appears to be the
exact opposite of sedentary lifestyle in biofilms, it may be
necessary for the formation of microcolonies during the early



Change in

Biocides

membrane lipid composition

Efflux

pump

OMP

Plasmid

Deletion/mutation

in the genes

Acquisition

of drug-resistant genes

by horizontal transfer

Modification/degradation

of biocides

Presence/modification

of cell wall

in Gram-positive bacteria

Inhibition of

biocide transport

due to modified structure

Porins

Impaired diffusion

of hydrophobic biocides

by outer membrane

in Gram-negative bacteria

OM

PG

IM

Figure 2. Various mechanisms of biocide resistance in bacteria. Bacteria are either naturally resistant to biocides (intrinsic resistance) or
can acquire resistance to biocides through multiple mechanisms (acquired resistance). Intrinsic resistance is achieved by having a cell
wall, an efflux mechanism, etc. Resistance can also be developed by altering genes involved in synthesizing cell walls, membrane lipids,
porins or outer membrane porins (OMP). Horizontal transfer of mobile genetic elements such as plasmids is another mechanism through
which bacteria acquire resistance. Specific genes that encode for proteins that can modify or degrade the biocide can be produced either
by modifying existing genes or horizontally transferring genes. OM, outer membrane; PG, peptidoglycan; IM, inner membrane.

E.S. Milani et al. / Journal of Hospital Infection 117 (2021) 135e146 139
phases of biofilm development, and the re-organization of
mature three-dimensional biofilm structures [9] (Figure 3).
Efflux pumps

Antimicrobial concentrations that permeate bacterial cells
are reduced by efflux pumps, which are found widely in bac-
teria [44]. The action of MDR efflux pumps, such as AdeIJK and
AdeABC of A. baumannii, is one of the most well-known biocide
and antibiotic cross-resistance mechanisms [15]. Following
antimicrobial exposure, the expression of efflux pumps can
rise, not necessarily through stimulation of the efflux pumps,
but by modulating global gene regulators, particularly marA
and soxS [44]. The major facilitator superfamily, the ATP-
binding cassette superfamily, the resistance nodulation-
division family, the small multi-drug-resistance family, and
the multi-drug and toxic chemical extrusion family have been
identified as five main classes of efflux pumps [44] (Figure 4).
The QAC genes (qac), which can be horizontally transferred to
other bacteria through plasmids, encode these multi-drug
efflux pumps named Qac proteins [23,30]. QacA and QacB
belong to the major facilitator superfamily, whereas QacC (also
known as Smr), QacE, QacE1, QacF, QacG, QacH, QacJ and
QacZ belong to the other families [49]. The qacE gene (and its
attenuated type qacED1) is commonly present in Gram-
negative bacteria, mediates resistance through a proton
pump, and confers resistance to QAC disinfectants (e.g. ben-
zalkonium chloride), biguanide compounds (such as chlorhex-
idine) and hydrazones [23].

The capacity of efflux pumps to provide resistance to bio-
cides is debatable; efflux pumps are most likely one of several
mechanisms used by bacteria to survive biocide/biocidal
product exposure [50,51].
Mobile genetic elements

In responseto selectionpressure,mobilegeneticelementsare
amplified [52]. Theseelements are frequently responsible for the
transmission, accumulation and widespread predominance of
resistance genes, resulting in MDR strains. Transposons, insertion
sequences, integrons and gene cassettes are examples of DNA
elements that can transfer molecules within or across mem-
branes. Others, such as integrative and conjugative elements
(ICEs) and plasmids, can migrate from one bacteria to another
[53]. Plasmids, ICEs and bacteriophages enable intercellular
mobility. Furthermore, interactions between these mobile
genetic elements are critical for the rapid evolution of anti-
microbial resistance and may cause disinfectant resistance [52].

Insertion sequences and composite transposons
Insertion sequences and transposons are two types of mobile

DNA fragments which were previously thought of as ‘passenger’
genes carrying resistance genes, but later proved that they
translocate resistance genes to new locations on the same or
different DNA molecules almost randomly [53]. Insertion
sequences, by containing a strong promoter upstream of their
location or translocating upstream of an essential chromosomal
gene, can influence the expression of their passenger genes.
Insertion sequences carrying resistance genes have also been
shown to have a 35-hexamer sequence region that forms a
hybrid promoter with an adjacent 10-like sequence, increasing
expression [54]. Insertion sequences usually contain one or two
transposase (tnp) genes, and two copies of identical or related
insertion sequences flank one or more genes to form a com-
posite transposon. This entire region moves simultaneously
[52]. It has been reported that a type of insertion sequence is
associated with the resistance gene qacC, which confers
resistance to disinfectants and antiseptics [55].
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Unit transposons
Unit transposons are usually larger than insertion sequen-

ces, include inversion repeats instead of two insertion
sequences flanking them, and may contain passenger and
transposase genes. The Tn3 and Tn7-like superfamilies are
mainly linked to antimicrobial resistance [53]. Tn2053-like
transposons confer disinfectant resistance [52] (Figure 5).
When separate resistance genes were translocated on to the
same transposon backbone, this led to several resistance
islands evolving in A. baumannii. As a result, larger structures
with several resistance genes were formed [53]. Parts of these
resistance islands are linked to the R1215 plasmid in some
bacteria such as Serratia marcescens. However, this plasmid
has not been proven to be stable in A. baumannii [56].

Integrons and gene cassettes
Gene cassettes are short strands of DNA usually found inte-

grated into integrons or in free circular structures. Gene cas-
settes typically contain one or two genes with no recombination
site (attC) or promoter [52]. A few components, including an intI
gene, a promoter and an attI recombination site, can be used to
identify integrons [53]. Integrons allow resistance genes tomove
between specified locations and undergo site-specific
recombination. As these mobile genetic components are fre-
quently present in many copies across the genome, homologous
recombination can be facilitated [52]. When several gene cas-
settes are placed into the same integron, a cassette array is
created. Depending on which passenger genes they carry, cas-
sette arrays can confer antibiotic and disinfectant resistance
upon bacteria [27]. As a result, co-resistance to disinfectants
and antibiotics has been found in highly-resistant strains [57,58].
Many integrons have their origins in simpler transposons [52].
Both antibiotic and disinfectant resistance are frequently linked
to class 1 integrons [53].

Genomic islands and integrative and conjugative
elements

A genomic island is a non-native section of a bacterial
chromosome introduced by horizontal gene transfer (not
native) [52,53]. Integrative and mobilizable elements and
genomic elements transported horizontally by phage-mediated
conjugation are all terms used to describe genomic islands
[59].

ICEs are mobile genetic elements integrated into the host
chromosome. These elements are removed from the chromo-
some after stimulation of ICE gene expression, and can self-
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transmit via conjugation [60]. Cargo genes that are unrelated
to the ICE life cycle but impart beneficial phenotypes on host
cells, such as resistance genes, are commonly found in ICEs
[60]. Even if the ICE does not include resistance gene(s), it is
possible that it is responsible for the mobilization of neigh-
bouring resistance islands with an oriT site [59]. It has been
reported that ICEs can play an essential role in the mobilization
of disinfectant-resistant class 1 integrons/transposons [61].

A bacterium’s sequenced genome can be used to detect
horizontal gene transfer. Transformation is more likely to be
the cause of the presence of genes that are found only in dis-
tantly related organisms. A cluster of genes with codon bias or
a guanine/cytosine content considerably different from the
rest of the bacterial genome is another signal [62]. By identi-
fying resistance genes and assessing the effects of their exis-
tence, next-generation sequencing and bioinformatic methods
provide insight into resistance mechanisms [52].
Laboratory techniques to study biocide
resistance/susceptibility in bacteria

Standardization of parameters such as culture medium,
inoculum density, incubation temperature and time is required
for phenotypic susceptibility testing. As a result, standardized
testing methods are essential for obtaining consistent and
comparable data [63]. Organizations such as the Clinical and
Laboratory Standards Institute and the European Committee on
Antimicrobial Susceptibility Testing have described established
and matched procedures for antimicrobial susceptibility test-
ing, such as KirbyeBauer disc diffusion, and micro broth and
macro broth dilutions [23,63]. However, no harmonized and
approved biocide susceptibility testing method has been
developed to date [63]. There have been no documented
minimum inhibitory concentration (MIC) breakpoints for
specific biocides related to reduce susceptibility until recently.
Furthermore, based on a statistical analysis of MIC values in
different test samples, various papers have asserted different
epidemiological cut-off values [64]. On the other hand, MICs
also serve as a helpful reference to biocides once utilized as
preservatives, where preventing microbial growth and reduc-
ing viability to predefined levels are preferable to inactivation
[23]. Microbiologists will be better able to choose appropriate
disinfectants if they know the susceptibility breakpoints of
biocides. This will aid in monitoring the success of the dis-
infection programme. However, little progress has been ach-
ieved in this approach, and guidelines have not been developed
to provide MIC breakpoints.

Accurate determination of resistance/susceptibility is dif-
ficult in the absence of valid clinical breakpoints. Nonetheless,
phenotypic and genotypic assessments of biocide resistance/
susceptibility have been attempted in some studies [30].
Cell membrane permeability changes

Biocides such as chlorhexidine and QAC change the perme-
ability of a bacteria’s outer membrane [13,30]. This altered
membrane permeability can be measured using a tetraphe-
nylphosphonium ion (TPPþ) electrode. The absorption of TPPþ
and the efflux of potassium are measured in the test. The
presence of ions shows that the membrane has been per-
meabilized. Due to the existence of charged LPS residues,
TPPþ penetration is often blocked by the outer membrane.

On the other hand, the action of biocides causes the outer
membrane to permeabilize, allowing TPPþ to diffuse into the
cell, followed by the efflux of Kþ ions. This assay can be used to
check for the development of resistance in bacteria against
membrane-acting (permeabilizing) agents [65]. To evaluate
the outer membrane’s structural organization, energy-



E.S. Milani et al. / Journal of Hospital Infection 117 (2021) 135e146142
dispersive X-ray analysis (EDAX) has proven to be a valuable
resource. In this way, the structure of the membrane is studied
using the X-ray diffraction pattern [27].

Uptake/exclusion studies

Drug exclusion experiments can also be used to examine the
changed expression of exporter porins. For this type of analy-
sis, compounds such as ethidium bromide, Hoechst dyes and
acriflavine are utilized. The absorption of biocides such as
chlorhexidine has also been investigated using EDAX. Here, an
electron beam is used to irradiate the sample, and the X-ray
pattern is evaluated. Since each element emits X-rays with
distinct energies, EDAX may be used to determine the ele-
mental composition of a sample, and hence the presence of a
biocide such as chlorhexidine [27].

Fatty acid profile of outer membrane

Analysing the lipid or fatty acid profile is used to assess
changes in membrane characteristics. For this, lipids from the
bacterial surface are collected and studied using gas chroma-
tography or thin layer chromatography. The profile of altered
lipids can also be analysed using mass spectrometric techni-
ques, such as matrix-assisted laser desorption/ionization and
electrospray ionization. The percentage of each class of lipids,
such as saturated vs unsaturated, phospholipids vs amino/
glycol-lipids, polar and neutral lipids, and anionic phospholi-
pids, is revealed by lipid analysis, indicating whether the
change is beneficial in the development of resistance to bio-
cides or antibiotics. For example, an increase in unsaturated
fatty acids improves fluidity, making the organism resistant to
antimicrobials. Reduced net negative charge and resistance to
cationic antimicrobials can be achieved by reducing anionic
IRt
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The quaternary ammonium compound resistance gene qacE cassette
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phospholipids and increasing cationic phospholipids. Several
bacteria change lipid moieties/teichoic acid polymers to get
cationic antimicrobial resistance. The addition of groups that
cause a positive charge on the lipid surface prevents cationic
antimicrobials from interacting with the bacterial surface. In
addition, reducing the phosphorous group in lipids decreases
the net negative charge on the bacterial surface, making it
more resistant to cationic antimicrobials. Increased resistance
to cationic biocides can be achieved by altering the structure
of LPS [27].

Surface hydrophobicity changes

Changes in cell surface hydrophobicity may limit the bio-
cide’s uptake or permeability. The changed hydrophobicity can
be determined using the microbial adherence to hydrocarbon
method, which involves mixing the bacterial suspension with
the appropriate hydrocarbon and estimating the partitioning of
bacteria in the hydrocarbon vs aqueous phase [27,66].

Use of microscopic techniques

The ultrastructural variations between susceptible and
resistant bacterium isolates have been studied using trans-
mission and scanning electron microscopy. The resistant cells
are intensely stained with negative staining (as determined by
transmission electron microscopy). They have a rough surface
with amorphous material outside (analysed by transmission and
scanning electron microscopy). Exopolysaccharide has been
stated to be present in the amorphous substance. The sus-
ceptibility of biofilms to biocides may be determined using
confocal laser scanning microscopy (CLSM), which visualizes
the spatiotemporal pattern of the biofilm. Bacteria in the
biofilms are dyed with a fluorogenic dye, and disruption to the
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bacterial membrane (due to biocides) causes dye leakage,
which CLSMmonitors in real-time. The patterns of fluorescence
loss can help estimate the biocide’s selectivity and, if any, its
limitations in killing bacteria in biofilms [27,67].

Expression analysis

Polymerase chain reaction (PCR), micro-array, SDS-poly-
acrylamide gel, and two-dimensional (2D) gel analysis followed
by mass spectrometry can be used to identify changes in OMP
expression. 2D differential fluorescence gel electrophoresis
was recently utilized to detect differentially expressed genes
in resistant vs susceptible bacterial strains, as well as differ-
entially expressed proteins found by mass spectrometry. The
change in the LPS profile was also analysed using an SDS-
polyacrylamide gel. The effective detection of over-
expression of efflux genes in biocide-resistant bacteria has
been achieved using PCR (real-time or reverse transcription).
In A. baumannii, qac genes and ade (multi-drug efflux pumps)
are examples of such genes. Micro-array, real-time PCR and
proteome analysis can all be used to assess whether the biocide
causes any changes in the expression of genes implicated in
resistance that are not OMPs. The development of cross-
resistance can be tested by PCR-restriction fragment length
polymorphism analysis of the known genetic markers imparting
antibiotic resistance [22,27].

Nucleotide sequencing

Although several studies have employed nucleotide
sequencing and whole-genome sequencing to find antibiotic
resistance mechanisms, few studies have utilized similar
techniques to find biocide resistance mechanisms [68].
According to nucleotide sequencing results, mutation in the
sdeS gene enhances production of the SdeAB efflux pump
genes, resulting in multi-drug resistance in S. marcescens [69].
To identify the bacteria that are resistant to the biocide, flow-
cytometric-based tests can be employed [70]. Using either of
the approaches mentioned above, fluorescent-activated cell
sorting may be used to sort these resistant cells and sub-
sequently analyse the resistance event [27].

Also, it has been reported that in some prokaryotes, genome
engineering techniques such as the CRISPR-Cas system can be
used to identify disinfection resistance genes, and even reverse
resistance [52]. Regarding use of the CRISPR-Cas system, it has
been evaluated that 2-aminoimidazole molecules can resensi-
tize bacteria to antibiotics [52,71].

Novel therapeutic approaches for antibiotic-
resistant A. baumannii

Biocides used in community or hospital settings are either
antiseptics or disinfectants. When these compounds remain on
any surface at subinhibitory concentrations, even in very
minute amounts, it could lead to reduced susceptibility, or
even the development of MDR epidemic clones [72]. Common
strategies to develop biocide resistance include cellular
changes on biocide accumulation, changes in permeability of
the cell envelope, modifications in features of the cell surface,
and bypass of metabolic blockage [73]. The consequence of
biocide resistance is the emergence of antibiotic resistance
clones [72,73]. Among these, efflux pumps contribute towards
the high level of intrinsic resistance to structurally unrelated
agents, and help the evolution of acquired resistance [22].

The ever-increasing antibiotic resistance strains with limi-
ted treatment options has prompted researchers to consider
new approaches to combat A. baumannii-associated infections
[74]. It is impossible to ignore previously overlooked modalities
with potential therapeutic activity against MDR bacteria [4].
Bacteriophages are one of the best examples of one such
modality that has been ignored for many years. Bacteriophages
and their encoded products, such as lysins, are being studied
extensively as biocide and antibiotic alternatives [75e77].
Wild-type bacteriophages and their enzymatic products
destroy target bacteria in the same way as antibiotics. In 2010,
the first report of phage isolation and specificity against
A. baumannii was published [4]. Against A. baumannii, the
phages AB1 and AB2 have been exhibited to possess lytic
behaviour [78]. Since then, many lytic phages have been dis-
covered, described and sequenced. The majority of in-vitro
investigations and characterization of phages against
A. baumannii indicated that they must be tested in vivo for
effectiveness and pharmacodynamics to combat infectious
diseases [78,79].

Usage of monoclonal antibodies is another therapeutic
modality; these antibodies bind to pathogen virulence factors
and deactivate them [80]. Due to their well-studied phenom-
ena and clinical effects, it appears sensible to utilize them as
an alternative. However, their production is too expensive to
be used for the routine treatment of infections [81].

Probiotics, as another choice, are living bacteria that have a
positive impact on human health. They compete for nutrition
and colonization space with the pathogen; however, their
specific modes of action are still being researched [4].

Various eukaryotic and prokaryotic organisms produce
antimicrobial peptides (AMPs) or short AMPs as part of their
innate host immune response. As they have the ability to
destroy bacteria, interest in AMPs is increasing. They are broad
spectrum in nature, have low resistance and low immunoge-
nicity, and carry a solution of antibiotic and biocide resistance
for Gram-negative and Gram-positive bacteria [82]. Several
peptides with activity against A. baumannii have been dis-
covered in vitro and in vivo. In a pandrug-resistant strain of
A. baumannii, a hybrid of cecropin A and melittin showed
action in peritoneal sepsis in an animal infection model [83].
Antibacterial activity has also been established for brevinin 2,
alyteserin 2 and catonic a-helical peptides against
A. baumannii. In a mouse model, the proline-rich peptide A3-
APO was more effective than imipenem at controlling
A. baumannii bacteraemia [4]. A Caenorhabditis elegans
model was protected from lethal infection by A. baumannii by
a short d-enantiomeric peptide named D-RR4 [84]. Many suc-
cessful studies on the potential of AMPs against such a resistant
organism exist in the literature; however, issues such as cyto-
toxicity, moderate activity, enzymatic degradation and high
production costs must be evaluated [81,84].

Another method to eliminate such bacteria is to use a gene-
editing technology that uses the clustered, regularly inter-
spaced short palindromic repeat (Cas) mechanism to knock out
the resistance gene, and make it labile to antimicrobial ther-
apy [4].

Chelators for metals, such as iron, zinc and manganese, are
essential in producing bacterial virulence factors and may be a
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viable target for developing novel antimicrobial therapies.
Liposomes, which are artificial nanoparticles composed of lip-
ids that closely resemble the membrane of host cells, can
function as decoys for bacterial toxins, causing them to be
sequestered and neutralized [85,86].

Conclusion

The development of effective biocides that target
antimicrobial-resistant pathogens surviving in the hospital
setting is a pressing problem. Intriguingly, a number of biocides
have been explored and used; however, precise information
about the MIC breakpoints has not been recommended.
Regardless of the manner of administration, a biocidal product
at a concentration insufficient to kill the target bacteria will
create a stress response, resulting in bacterial survival. All
environmental isolates must be monitored regularly, and their
sensitivity to disinfectants must be assessed. This is a crucial
aspect of the disinfection programme and the overall bio-
contamination management plan. It is expected that compre-
hensive data collected from healthcare settings may help in
the development of strategies for correct biocide usage in the
future. These various evaluations will improve understanding
of biocide-resistant processes and contextualize the possible
threats that certain organisms provide to the environment. To
address this, insight into antimicrobial action, resistance
mechanisms and the approach to testing biocides will aid the
selection of correct or novel antimicrobials.
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